The researchers found higher-than-usual numbers of gene-regulating molecules called methyl groups in a region of the genome that regulates oxytocin receptor expression in people with autism.
"In both blood samples and brain tissue, the methylation status of specific nucleotides in the oxytocin receptor gene is significantly higher in someone with autism, about 70 percent, compared to the control population, where it is about 40 percent," said co-lead author Simon G. Gregory, Ph.D., assistant professor in the Duke Department of Medicine. The work appears in BMC Medicine journal online.
Oxytocin is a hormone secreted into the bloodstream from the brain, and also released within the brain, where it has a bearing on social interaction. Previous studies have shown that giving oxytocin can improve an autistic person's social engagement behavior and it is being explored as a potential treatment of the disorder. Higher methylation of the oxytocin receptor gene may make a person less sensitive to the hormone.
"These results provide a possible explanation of why social isolation forms part of the autism spectrum – because an autistic individual's ability to respond to oxytocin may be limited," Gregory said. " Oxytocin has been tied to levels of trust and ability to read social cues."
Although the methylation status of the OXTR gene is not a definitive diagnosis of autism by itself, a test for methylation might be used along with other clinical tests for diagnosing autism. Gregory said that methylation-modifying drugs also may be a new avenue for treatments.
Though not a change to the DNA sequence itself, methylation status can be inherited, by what is known as epigenetics - inherited changes in gene regulation.
"The epigenetic link to autism is extremely exciting as it provides another opportunity for us to explore the heritability of this disorder and argues the importance of exploring epigenetic markers in complex disease," said co-lead author Jessica J. Connelly, Ph.D., assistant professor in the Department of Medicine at the University of Virginia.
Steve - there is that buzzword again: epigenetics. If you recall what we have been saying for the last several years, environmental, dietary, and lifestyle choices all contribute to gene expression. If our choices are poor, such as exposing ourselves to poor diet and exposing ourselves and our unborn children to an excessive environmental toxic load, we overload methylation genes, thus negatively expressing genes we would rather keep latent. Soon enough, science will understand this connection and public health officials will have to take a long, hard look at the gigantic weight of toxicity that burdens the human population.
No comments:
Post a Comment