Friday, January 06, 2012

JACI admits climate change exacerbates allergy

"Accumulation of anthropogenic gases, particularly CO2, is likely to have 2 fundamental effects on plant biology. The first is an indirect effect through Earth’s increasing average surface temperatures, with subsequent effects on other aspects of climate, such as rainfall and extreme weather events. The second is a direct effect caused by CO2-induced stimulation of photosynthesis and plant growth. Both effects are likely to alter a number of fundamental aspects of plant biology and human health, including aerobiology and allergic diseases, respectively. This review highlights the current and projected effect of increasing CO2 and climate change in the context of plants and allergen exposure, emphasizing direct effects on plant physiologic parameters (eg, pollen production) and indirect effects (eg, fungal sporulation) related to diverse biotic and abiotic interactions. Overall, the review assumes that future global mitigation efforts will be limited and suggests a number of key research areas that will assist in adapting to the ongoing challenges to public health associated with increased allergen exposure.

Ambient air pollution, including particulate matter (PM) and gaseous pollutants, represents important environmental exposures that adversely affect human health. Because of their heritable and reversible nature, epigenetic modifications provide a plausible link between the environment and alterations in gene expression that might lead to disease. Epidemiologic evidence supports that environmental exposures in childhood affect susceptibility to disease later in life, supporting the belief that epigenetic changes can affect ongoing development and promote disease long after the environmental exposure has ceased. Indeed, allergic disorders often have their roots in early childhood, and early exposure to PM has been strongly associated with the subsequent development of asthma. The purpose of this review is to summarize recent findings on the genetic and epigenetic regulation of responses to ambient air pollutants, specifically respirable PM, and their association with the development of allergic disorders. Understanding these epigenetic biomarkers and how they integrate with genetic influences to translate the biologic effect of particulate exposure is critical to developing novel preventative and therapeutic strategies for allergic disorders."


The Journal of Allergy and Clinical Immunology 1/2012

No comments: